Generalized N-dimensional principal component analysis (GND-PCA) and its application on construction of statistical appearance models for medical volumes with fewer samples

نویسندگان

  • Rui Xu
  • Yen-Wei Chen
چکیده

We propose a method called generalized N-dimensional principal component analysis (GND-PCA) for the modeling of a series of multi-dimensional data in this paper. In this method, the data are directly trained as the higher-order tensor and the bases in each mode subspace are calculated to compactly represent the data. Since GND-PCA analyzes the multi-dimensional data directly on each mode better performance on generalization than PCA. Additionally, since GND-PCA can compress the data in each mode subspace, it can represent the data more efficiently, compared to the recently proposed ND-PCA method. We apply the proposed GND-PCA method to construct the appearance models for 18 MR T1-weighted brain volumes and 25 CT lung volumes, respectively. The leave-one-out experiments show that the statistical appearance models built by our method can represent an untrained data well even though the models are trained by fewer samples. & 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Statistical Texture Model of the Liver Based on Generalized N-Dimensional Principal Component Analysis (GND-PCA) and 3D Shape Normalization

We present a method based on generalized N-dimensional principal component analysis (GND-PCA) and a 3D shape normalization technique for statistical texture modeling of the liver. The 3D shape normalization technique is used for normalizing liver shapes in order to remove the liver shape variability and capture pure texture variations. The GND-PCA is used to overcome overfitting problems when t...

متن کامل

Generalized N-Dimensional Principal Component Analysis and Its Application to Statistical Appearance Modeling of Facial Images with Multiple Modes

In this paper we proposed a new approach called generalized N-dimensional principal component analysis (GND-PCA) for statistical appearance modeling of facial images with multiple modes including different people, different pose and different illumination. The facial images with multiple modes can be considered as high-dimensional data. GND-PCA can be used to treat the high-order dimensional da...

متن کامل

GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI

We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistica...

متن کامل

Statistical Fractal Models Based on GND-PCA and Its Application on Classification of Liver Diseases

A new method is proposed to establish the statistical fractal model for liver diseases classification. Firstly, the fractal theory is used to construct the high-order tensor, and then Generalized N-dimensional Principal Component Analysis (GND-PCA) is used to establish the statistical fractal model and select the feature from the region of liver; at the same time different features have differe...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2009